Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Methods ; 205: 1-10, 2022 09.
Article in English | MEDLINE | ID: covidwho-1882634

ABSTRACT

Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.


Subject(s)
Argonaute Proteins , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Argonaute Proteins/genetics , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques/methods
3.
Trends Biochem Sci ; 47(11): 978-988, 2022 11.
Article in English | MEDLINE | ID: covidwho-1866217

ABSTRACT

The antiviral defense directed by the RNAi pathway employs distinct specificity and effector mechanisms compared with other immune responses. The specificity of antiviral RNAi is programmed by siRNAs processed from virus-derived double-stranded RNA by Dicer endonuclease. Argonaute-containing RNA-induced silencing complex loaded with the viral siRNAs acts as the effector to mediate specific virus clearance by RNAi. Recent studies have provided evidence for the production and antiviral function of virus-derived siRNAs in both undifferentiated and differentiated mammalian cells infected with a range of RNA viruses when the cognate virus-encoded suppressor of RNAi (VSR) is rendered nonfunctional. In this review, we discuss the function, mechanism, and evolutionary origin of the validated mammalian VSRs and cell culture assays for their identification.


Subject(s)
Argonaute Proteins , RNA, Double-Stranded , Animals , Antiviral Agents , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mammals/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics
4.
Biomolecules ; 12(3)2022 02 23.
Article in English | MEDLINE | ID: covidwho-1760346

ABSTRACT

Prokaryotic Argonautes (pAgos) from mesophilic bacteria are attracting increasing attention for their genome editing potential. So far, it has been reported that KmAgo from Kurthia massiliensis can utilize DNA and RNA guide of any sequence to effectively cleave DNA and RNA targets. Here we find that three active pAgos, which have about 50% sequence identity with KmAgo, possess typical DNA-guided DNA target cleavage ability. Among them, RsuAgo from Rummeliibacillus suwonensis is mainly explored for which can cleave both DNA and RNA targets. Interestingly, RsuAgo-mediated RNA target cleavage occurs only with short guide DNAs in a narrow length range (16-20 nt), and mismatches between the guide and target sequence greatly affect the efficiency of RNA target cleavage. RsuAgo-mediated target cleavage shows a preference for a guide strand with a 5'-terminal A residue. Furthermore, we have found that RsuAgo can cleave double-stranded DNA in a low-salt buffer at 37 °C. These properties of RsuAgo provide a new tool for DNA and RNA manipulation at moderate temperatures.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Argonaute Proteins/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/chemistry , Endonucleases , Planococcaceae , RNA
5.
EBioMedicine ; 76: 103861, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1734342

ABSTRACT

BACKGROUND: Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS: Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS: Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION: HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING: The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).


Subject(s)
Gene Regulatory Networks/genetics , Genome, Human , Hyaluronic Acid/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Antagomirs/metabolism , Argonaute Proteins/genetics , Base Sequence , COVID-19/pathology , COVID-19/virology , Cell Line , Disease Progression , Enhancer Elements, Genetic/genetics , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/blood , MicroRNAs/genetics , RNA, Viral/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Up-Regulation
6.
Sci Rep ; 11(1): 19161, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440480

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with fatal pulmonary fibrosis. Small interfering RNAs (siRNAs) can be developed to induce RNA interference against SARS-CoV-2, and their susceptible target sites can be inferred by Argonaute crosslinking immunoprecipitation sequencing (AGO CLIP). Here, by reanalysing AGO CLIP data in RNA viruses, we delineated putative AGO binding in the conserved non-structural protein 12 (nsp12) region encoding RNA-dependent RNA polymerase (RdRP) in SARS-CoV-2. We utilised the inferred AGO binding to optimise the local RNA folding parameter to calculate target accessibility and predict all potent siRNA target sites in the SARS-CoV-2 genome, avoiding sequence variants. siRNAs loaded onto AGO also repressed seed (positions 2-8)-matched transcripts by acting as microRNAs (miRNAs). To utilise this, we further screened 13 potential siRNAs whose seed sequences were matched to known antifibrotic miRNAs and confirmed their miRNA-like activity. A miR-27-mimicking siRNA designed to target the nsp12 region (27/RdRP) was validated to silence a synthesised nsp12 RNA mimic in lung cell lines and function as an antifibrotic miR-27 in regulating target transcriptomes related to TGF-ß signalling. siRNA sequences with an antifibrotic miRNA-like activity that could synergistically treat COVID-19 are available online ( http://clip.korea.ac.kr/covid19 ).


Subject(s)
Argonaute Proteins/genetics , COVID-19/prevention & control , MicroRNAs/genetics , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , A549 Cells , Argonaute Proteins/metabolism , Base Sequence , Binding Sites/genetics , COVID-19/virology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Expression Profiling/methods , HeLa Cells , Humans , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA-Seq/methods , SARS-CoV-2/physiology , Sequence Homology, Nucleic Acid
7.
Infect Genet Evol ; 93: 104951, 2021 09.
Article in English | MEDLINE | ID: covidwho-1253387

ABSTRACT

The devastating outbreak of COVID-19 has spread all over the world and has become a global health concern. There is no specific therapeutics to encounter the COVID-19. Small interfering RNA (siRNA)-based therapy is an efficient strategy to control human viral infections employing post-transcriptional gene silencing (PTGS) through neutralizing target complementary mRNA. RNA-dependent RNA polymerase (RdRp) encoded by the viral RdRp gene as a part of the replication-transcription complex can be adopted as an acceptable target for controlling SARS-CoV-2 mediated infection. Therefore, in the current study, accessible siRNA designing tools, including significant algorithms and parameters, were rationally used to design the candidate siRNAs against SARS-COV-2 encoded RdRp. The designed siRNA molecules possessed adequate nucleotide-based and other features for potent gene silencing. The targets of the designed siRNAs revealed no significant matches within the whole human genome, ruling out any possibilities for off-target silencing by the siRNAs. Characterization with different potential parameters of efficacy allowed selecting the finest siRNA among all the designed siRNA molecules. Further, validation assessment and target site accessibility prediction also rationalized the suitability of this siRNA molecule. Molecular docking study between the selected siRNA molecule and component of RNA interference (RNAi) pathway gave an excellent outcome. Molecular dynamics of two complexes: siRNA and argonaute complex, guide RNA, and target protein complex, have shown structural stability of these proteins. Therefore, the designed siRNA molecule might act as an effective therapeutic agent against the SARS-CoV-2 at the genome level and can prevent further outbreaks of COVID-19 in humans.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/genetics , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Base Composition , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Silencing , Genome, Human , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/chemistry , Sequence Alignment
8.
Biosens Bioelectron ; 177: 112932, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-987149

ABSTRACT

In the present study, we upgraded Pyrococcus furiosus Argonaute (PfAgo) mediated nucleic acid detection method and established a highly sensitive and accurate molecular diagnosis platform for the large-scale screening of COVID-19 infection. Briefly, RT-PCR was performed with the viral RNA extracted from nasopharyngeal or oropharyngeal swabs as template to amplify conserved regions in the viral genome. Next, PfAgo, guide DNAs and molecular beacons in appropriate buffer were added to the PCR products, followed by incubating at 95 °C for 20-30 min. Subsequently, the fluorescence signal was detected. This method was named as SARS-CoV-2 PAND. The whole procedure is accomplished in approximately an hour with the using time of the Real-time fluorescence quantitative PCR instrument shortened from >1 h to only 3-5 min per batch in comparison with RT-qPCR, hence the shortage of the expensive Real-time PCR instrument is alleviated. Moreover, this platform was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The diagnostic results of clinic samples with SARS-CoV-2 PAND displayed 100% consistence with RT-qPCR test.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Archaeal Proteins/genetics , Argonaute Proteins/genetics , Biosensing Techniques/methods , COVID-19/virology , Humans , Limit of Detection , Nasopharynx/virology , Point Mutation , Pyrococcus furiosus/genetics , RNA, Viral/genetics , Recombinant Proteins/genetics , SARS-CoV-2/genetics
9.
Genomics ; 113(1 Pt 1): 331-343, 2021 01.
Article in English | MEDLINE | ID: covidwho-972544

ABSTRACT

An outbreak, caused by an RNA virus, SARS-CoV-2 named COVID-19 has become pandemic with a magnitude which is daunting to all public health institutions in the absence of specific antiviral treatment. Surface glycoprotein and nucleocapsid phosphoprotein are two important proteins of this virus facilitating its entry into host cell and genome replication. Small interfering RNA (siRNA) is a prospective tool of the RNA interference (RNAi) pathway for the control of human viral infections by suppressing viral gene expression through hybridization and neutralization of target complementary mRNA. So, in this study, the power of RNA interference technology was harnessed to develop siRNA molecules against specific target genes namely, nucleocapsid phosphoprotein gene and surface glycoprotein gene. Conserved sequence from 139 SARS-CoV-2 strains from around the globe was collected to construct 78 siRNA that can inactivate nucleocapsid phosphoprotein and surface glycoprotein genes. Finally, based on GC content, free energy of folding, free energy of binding, melting temperature, efficacy prediction and molecular docking analysis, 8 siRNA molecules were selected which are proposed to exert the best action. These predicted siRNAs should effectively silence the genes of SARS-CoV-2 during siRNA mediated treatment assisting in the response against SARS-CoV-2.


Subject(s)
COVID-19/therapy , Computational Chemistry , Coronavirus Nucleocapsid Proteins/genetics , Drug Design , Genetic Therapy/methods , Molecular Docking Simulation , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Small Interfering/chemistry , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Composition , COVID-19/virology , Evolution, Molecular , Gene Expression Regulation, Viral/drug effects , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , RNA Folding , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , RNA, Viral/genetics , SARS-CoV-2/drug effects , Sequence Alignment , Thermodynamics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL